Signals of Opportunity Airborne Demonstrator (SoOp-AD)

Joseph Knuble

Earth Science Technology Forum
2013 ESTO Instrument Incubator Program (IIP)
June 24th, 2015

Outline

- Overview
- Project Team
- Science Background and Motivations
- P-Band Signal Details
- Instrument Architecture
- Measurement Simulation
- Next Steps

Measurement Overview

P-Band Reflectometry

We propose to measure Root Zone Soil Moisture (RZSM) through cross-correlation of direct and reflected P-Band geosynchronous communication satellite signals.

Basis of Measurement

Expected Performance

Parameter	SoOp Airborne	SoOp Spaceborne	
Resolution*	100m 870m		
Antenna Size	75 x 75 cm	75 x 75 cm	
Sensing Depth	0-30cm	0-30cm	
Sensing Precision**	0.04m ³ /m ³	0.04m ³ /m ³	

^{*}Specular Reflection Assumed

^{**}SMAP Requirement

Project Team

Purdue University

Simulation, Retrieval Algorithms, Requirements Def.

- PI: Jim Garrison (Assoc. Prof)
- Georges Stienne (Post-doc)
- Yao-Cheng "Zenki" Lin (PhD candidate)

NASA GSFC

Systems Engineering, RF Design, Aircraft Integration

- Co-I: Jeff Piepmeier (555)
- Co-I: Joe Knuble (555)
- Ken Hersey (AS&D)
- Cornelus Du Toit (AS&D)
- Co-I: Alicia Joseph (617)

- Harris (Formerly Exelis, Inc)
 Digital Receiver Design
 - George Alikakos
 - Co-I: Steve O'Brien
- Langley Research Center
 Aircraft Operations
 - Bruce Fisher
- Dr. Stephen Katzberg Consultant Scattering Model, Signal Processing

Scientific Motivation

- Root Zone Soil Moisture (RZSM):
 - Water in top ~meter of soil
 - Critical link between surface hydrology and deeper process
 - Drainage and absorption by plant roots
 - Connection between near-term precipitation and longterm availability of fresh water
- Biomass: a related measurement
 - Carbon storage in vegetation key part of CO₂ balance
 - Raw material and source of 9-13% of World's energy

Current Sensing Limitations

L-Band

- L-band (SMAP) penetrates only few cm of soil
- Saturation at L-band limits the ability to sense soil moisture through vegetation
- RZSM from SMAP Level 4 model

P-Band Radar

- Difficult to find allocation in heavily utilized spectrum
- ESA-BIOMASS cannot operate in North America or Europe due to interference with Space Object Tracking Radar
- RFI
- Expensive from space

SoOp-AD Solution

We propose to use the principles of reflectometry and reflected SATCOM signals to measure RZSM.

- Reutilizing active transmitters with forward scattering presents strong signals even at orbital altitudes.
- Specular reflection provides good resolution with small antennas.
- Not limited to protected frequency bands and potentially more resilient to RFI.
- SoOp-AD will first measure RZSM from an aircraft.
- P-Band and S-Band (XM Radio) will be investigated.
- SoOp-AD will use geostationary P-Band SATCOM systems
 - 225-420MHz allocation for government use, SoOp-AD will focus on 240-270MHz band: 18 25KHz channels, 20 5KHz channels.
 - Continuous use by US since 1978, follow-on systems planning legacy support
 - SoOp-AD method measures correlation of direct and reflected signals does not require demod / decode of the transmission. Can work with any noise-like signal source!

SoOp-AD Project Highlights

IIP Timeline

- Awarded in April '14.
- Subsystem I&T at GSFC this summer.
- Science flights in Fall of '16.

Instrument

- Antennas: Patch, Dual Linear Pol, Null Steering
- Receivers: Standard P-Band Receivers w/ internal calibration. S-Band receiver for XM Radio included. Brassboard and compact card.
- Digital System: FPGA based. 7TB Storage: 1 hour of raw data or many days of processed data.
- Two aircraft racks: 12U Total

Aircraft Campaign

- Flying on NASA Langley B200.
- Co-Flying with SLAP instrument (GSFC's Active / Passive L-Band).
- Science flights over the St. Joseph's Watershed.

Signal Bands and Coverage

Incidence Angle for Geostationary Sources used by SoOp-AD.

Measured Signal Details & RFI

Waterfall spectrum measured at GSFC over 11 days. Note persistence of SATCOM signals and broad-band RFI.

Direct Signal Link Budgets

	P-B	and	S-Band (XM-Radio)		
EIRP	26dBW (14dBW Measured)		68dBW		
Frequency	240-270MHz		2332.5-2345.0 MHz		
Bandwidth	25 kHz		1.886 MHz		
Longitude	-99.2 °	-105.6°	-85 °	-105°	
Distance	38128km	38512km	37447km	38474km	
Path loss	-172dB	-173dB	-191dB	-192dB	
Atmospheric loss	-1dB				
Sky-view antenna gain	7dB				
Sky-view antenna noise	145K				
Pre-switch noise	212K				
Post-switch noise	350K				
SNR	15.7dB (3.7dB)	15.6dB (3.6dB)	20.1dB	19.8dB	

SoOp-AD System Architecture

Antenna System Considerations

- Direct-to-Reflect isolation is driving requirement – But not in orbit!
- Using "Smart Antenna" to steer a null as necessary in postprocessing.
- Simulation: Earth View Beam
 - Co-pol (blue): LHCP
 - X-pol (red): RHCP

Results simulate a post-processed ¹⁸⁰
 pattern with a null steered to +40° ₁₉₀

Measurement Simulation

Purpose:

- Science requirement flow-down to technology requirements
- Error budget
- First generation retrieval algorithms
- Two Methods: Synthetic (IF) Signal Generator (forward model) and Extended Kalman Filter (inverse estimator)
- Evaluate Error Sources against 0.04m³/m³ Precision Req.
 - SNR
 - RFI
 - Direct signal leakage into reflect antenna (easier in orbit!)
 - Multiple Satellite Interference
 - Antenna Pattern Knowledge
 - Aircraft Position & Attitude Knowledge
 - Number of correlation delays
 - Terrain Height Fluctuation
 - Uncertainty in Receiver Gain and Offset

Modelling Details

Measuring Γ from X_1 and X_2

- G_{S,R} and G_{E,D} are error sources, estimated with forward model and EKF.
- Ratio of G₁ and G₂ measured with cal system.
- $G_{S,D}$ and $G_{E,R}$ are known given aircraft position and antenna patterns

Measurements are made on samples of Z_{11} (autocorrelation of channel 1), Z_{22} (autocorrelation of channel 2) and Z_{12} (cross-correlation between channel 1 and channel 2)

Simulated Forward Model Correlation Result

Current Modelling Results

We believe we will meet requirements with margin.

Next Steps

- Continue Model Refinement
- Perform I&T at GSFC this Summer
- Field campaign using a tower
- Aircraft Campaign in Fall of 2016